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Summary

Momentum, elucidating the phenomenon wherein a player’s real-time performance surpasses
pre-match expectations, holds paramount significance in tennis matches. This paper introduces the
Real-Time Momentum Quantification (RTMQ) model, which quantifies momentum by assessing
the disparity between a player’s pre-match win probability and the real-time win probability. The
study establishes the importance of momentum by comparing our model’s results with an alternative
model that neglects in-match performance. Notably, specialized indicators are employed to predict
momentum swings, and game theory is applied to strategize against different opponents.

First, we use the independent and identically distributed (IID) assumption to reverse calculate the
server’s probability of winning the first point (𝑝0), base on the Elo rating system. IID assumption
is not applied to calculate any other value, including real-time win probability. Then, RTMQ
model is constructed by integrating 𝑝0 and the Real-Time Win Probability (RTWP) model for
calculating subsequent point win probabilities during a match, that also eliminates the effect of
the serve side advantage. The resulting momentum difference aligns seamlessly with real-world
observations. The significance of momentum is confirmed through a K-S test, rejecting the
hypothesis that in-match performance is inconsequential. Further analysis involves applying the
Fourier Series Fitting (FSF) model to track momentum trend.

To forecast large momentum shifts, a Swing Prediction (SP) model is introduced. The model
operates on a per-set basis, as a set provides a more comprehensive dataset for analysis compared to
individual games. We sample the momentum trend value (MMTTV) from the momentum trend at
the end of each set. This is because the frequent in-set momentum shifts can render predictions based
on real-time momentum data at the end of each set unreliable. At the same time, key technical
performance factors are distilled from specialized indicators through factor analysis. We then
employ a Multivariate Linear Regression model to predict the swings. Our model demonstrates
an impressive prediction accuracy of 90.44% on our test problem, with specific factors such as
2nd_serve_direct_won and Net_approach_point_won identified as crucial contributors to player
1’s momentum.

The paper extends its analysis to dynamic strategic choices made by tennis players during
matches, employing the Mixed-Strategy Nash Equilibrium model. K-means clustering is
utilized to determine strategic clusters. The Nash equilibrium is calculated, offering insights into
optimal strategy combinations against different opponents.

The efficacy of the proposed models is validated through testing on notable tennis matches,
including the extraordinarily tight 2023 Wimbledon Gentlemen’s Final between Carlos Alcaraz and
Novak Djokovic, and the one-sided 2017 French Open match between Andy Murray and Andrey
Kuznetsov. The SP model exhibits high accuracy (85.32% for the Alcaraz vs. Djokovic match,
and 88.34% for the Murray vs. Kuznetsov match), while the FSF model accurately cap-
tures momentum trends, taking into account the score situation and historical commentary.
Eventually, we pinpoint crucial factors for inclusion in future models.

Keywords: tennis; momentum; real-time win probability; Elo rating system; mixed-strategy Nash
equilibrium; quantification model
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1 Introduction
1.1 Background Information

In the 2023 Wimbledon final, Carlos Alcaraz overcame Novak Djokovic’s initial dominance to
win, demonstrating a thrilling momentum shift. This echoed the 2008 final where Rafael Nadal
triumphed over Roger Federer, highlighting the unpredictable and captivating nature of tennis.

Research has shown that athletes, especially tennis players, can experience a psychological or
physiological boost known as momentum. This concept was first explored in a study by Gilovich,
Vallone, and Tversky (1985), who identified a ‘hot hand’ phenomenon in basketball where
a player’s real-time performance significantly exceeds pre-match expectations based on his
overall record. However, momentum can be temporary and may shift to the opponent, leading to
swings where potential winners lose several points or games.

This paper explores the dynamic performance changes of players throughout a game and offers
in-depth insights into how players’ techniques and strategies should adapt in response to their
opponents’ key factors.

1.2 Problem Analysis
• Task 1: Construct a model that dynamically calculates the performance of both players

within the match, taking serving-advantage into consideration.
In this paper, we develop an RTWP (Real-Time Win Probability) model that accurately
predicts the win probability of the subsequent point based on Elo rating system in real
time. On that basis, we built the RTMQ (Real-Time Momentum Quantification) model by
effectively quantifying player performance, by calculating the difference between real-
time and pre-match win rates under separate serve/receive conditions (considering the
serving side’s advantage). Finally we apply Fourier-series fitting to MMT to obtain the
momentum trend value (MMTTV).

• Task 2: Evaluate the significance of ’momentum’ in tennis matches.
We took the 2023 Winbledon final as an example and tested our RTWP model and the
CWP (Constant Win Probability) model, which neglects the influence of momentum. A
Kolmogorov-Smirnov (K-S) test is performed taking the model results as the input and
confirms the significant role that momentum plays in the match, reversing the coach’s
hypothesis.

• Task 3: Determine the key indicators that could trigger a momentum shift.
We introduce the Swing Prediction (SP) model to anticipate substantial momentum shifts,
using the more stable MMTTV as a sample for each set. This is because the frequent in-set
momentum shifts can render predictions based on real-time momentum data at the end of
each set unreliable. MMTTV has no such fluctuations and effectively captures the trend
of MMT. Subsequently, we identify technical indicators influencing player performance,
extract common factors through factor analysis, and employ these as independent variables in
a Multivariate Linear Regression to predict the swings. Subsequently, we apply K-means
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clustering to distinguish between different tactics and finally calculate the player’s
optimal strategy using a mixed-strategy Nash equilibrium approach.

• Task 4: Assess the model’s ability to predict match swings and evaluate its performance
across various tournaments, court surfaces, and other sports.
We validated the accuracy of our model using data from other matches in the dataset and
conducted a sensitivity analysis. Subsequently, we discussed potential improvements to the
model by considering factors such as climate and court surface. Finally, we further discussed
the generalization capabilities of our model using the 2017 French Open Men’s Singles
dataset as an example.

1.3 Model Overview

Figure 1: Model Overview

2 Assumptions
• All tennis players in the table demonstrate a high level of adaptability during play. This

adaptability is reflected in their ability to continuously modify strategies based on their
opponent’s characteristics.

• The technical indicators in the table, such as the way of winning, are able to fully characterize
the strategy adopted by the current player. Changes in these indicators during a match can
fully characterize changes in a player’s strategy.

• All data are authentic.
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3 Notifications

Table 1: Significant symbols in this paper
Symbols Description

𝐸𝑖 (𝑡) the 𝑖𝑡ℎ player’s Elo rating at the 𝑡𝑡ℎ match
𝑃𝑖 𝑗 (𝑡) a prediction based on Elo indicating that the 𝑖𝑡ℎ player defeats the 𝑗 𝑡ℎ opponent
𝑝0 the probability of a server winning the first point, constant during match

𝑝(𝑆𝑚) the probability of a server winning the next point, dynamic within match
𝜂(𝑆𝑚) a dynamic weight that balances the pre-match and in-match serve information
𝜆𝑖 a weight emphasizing performance at the moment over the initial performance

PA(t) Real-Time Win Probability of player A
MMTA(t) Real-Time Momentum value of player A

MMTTVA(t) Real-Time Momentum Trend value of player A

4 Data Source

Table 2: The websites we use to obtain the necessary data
No. Website Usage

1 https://www.tenelos.com/ Acquire Elo ratings of all players before match
2 https://www.atptour.com/en/rankings/

singles?DateWeek=2023-07-03
Acquire𝑚𝑖 to calculate𝐾𝑖 of players before match

3 https://www.wimbledon.com/ Search for relevant data of players in the dataset
4 https://github.com/JeffSackmann/ ten-

nis_slam_pointbypoint
2017 French Open dataset for problem 4

5 Real-Time Momentum Quantification Model
In our RTMQ model, we adopt a definition of momentum that is consistent with the classic

interpretation of Gilovich et al. (1985). In this context, momentum is defined as a player’s
performance during a given period that significantly exceeds his expected performance based
on pre-match predictions. The calculation of momentum involves determining the difference
between the pre-match win probability and the real-time win probability. The greater the difference,
the greater the momentum.

The modeling process is divided into four stages: obtaining the pre-match win prediction,
determining the first point’s win probability, dynamically computing the subsequent points’
win probabilities, and calculating the difference eventually. The modeling flow of the RTMQ
model is shown below.



Team # 2406176 Page 7 of 27

Figure 2: RTMQ model setup

5.1 Pre-match Win Prediction
We utilize the Elo rating system to predict match outcomes before the game. This outstand-

ing system, dynamic and zero-sum, adjusts player ratings based on match outcomes and maintains
fairness. Its simplicity, robustness, and proven effectiveness across sports highlight its adaptability
and reliability.

The rating of a player is calculated with the following recursive formula:

𝐸𝑖 (𝑡 + 1) = 𝐸𝑖 (𝑡) + 𝐾𝑖 ×
(
𝑃𝑖 𝑗 (𝑡) −𝑊𝑖 (𝑡)

)
𝐸𝑖 (1) = 1500

(1)

where 𝐸𝑖 denotes the 𝑖𝑡ℎ player’s Elo rating (in a player’s very first tour match, 𝐸𝑖 (1) is assigned
1500), 𝑡 is the number of match,𝑊𝑖 is a discrete variable that equals 1 if the player loses the match
and equals 0 if the player wins the match, and 𝑃𝑖 𝑗 (𝑡) is a prediction based on Elo indicating that
the 𝑖𝑡ℎ player defeats the 𝑗 𝑡ℎ opponent. 𝐾𝑖, relevant to the number of the player’s career matches, is
equal to

𝐾𝑖 =
250

(𝑚𝑖 (𝑡) + 5)0.4
(2)
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where 𝑚𝑖 (𝑡) is match number. 𝑃𝑖 𝑗 (𝑡) is calculated through

𝑃𝑖 𝑗 (𝑡) =
(
1 + 10

(𝐸𝑗 (𝑡 )−𝐸𝑖 (𝑡 ))
400

)−1

(3)

which matches our intuition. When 𝐸 𝑗 (𝑡) < 𝐸𝑖 (𝑡) and 𝐸 𝑗 (𝑡) − 𝐸𝑖 (𝑡) decreases, indicating a rising
competence of the 𝑖𝑡ℎ player over the 𝑗 𝑡ℎ player, the winning probability 𝑃𝑖 𝑗 increases.

5.2 Probability of Winning the First Point
To track the performance of the players, the win probability of the first point is calculated.

We take the independent and identically distributed (IID) assumption and use 𝑃𝑖 𝑗 to reverse
calculate the probability of the pre-match serving side winning the first point. The probability
of securing the initial serving/receiving point in a match, represented as 𝑝0/𝑝0 − 𝜀 (𝜀 = 0.25 for
men athletes and = 0.15 for women athletes, according to previous research led by Machar Reid),
are assumed to be the same as the probability of winning any subsequent serving/receiving point
prior to the beginning of the match. The probability of winning the upcoming point, 𝑝(𝑆𝑚), will
be recalculated after the conclusion of the first points as they occur. In mathematical terms, we
aim to solve for 𝑝0 through

𝑓0(𝑝0, 𝑞0) = 𝑃𝑖 𝑗 (4)

where 𝑞0 = 1 − 𝑝0. The figure below indicates the progression of scores in a tennis game for a
server (if receiver, 𝑝𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟0 = 𝑝0 − 𝜀 and 𝑞𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟0 = 1 − 𝑝0 + 𝜀).

Figure 3: Progression of scores in a tennis game for a server

The following algorithm demonstrates the computation of 𝑓0(𝑝0, 1 − 𝑝0), which is entirely
based on probability. The pseudocode below outlines the calculation of match-winning probability.
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Algorithm 1 Probability of Winning a Tennis Match
Data: Player A’s and Player B’s probability of winning the first point 𝑝𝐴0 , 𝑝𝐵0 as servers
Result: Probability of Player A winning the match 𝑃𝑖 𝑗
begin

Calculate 𝑝𝐺𝐴 = (𝑝𝐴0 )
4 + 4(𝑝𝐴0 )

4(1 − 𝑝𝐴0 ) + 10(𝑝𝐴0 )
4(1 − 𝑝𝐴0 )

2 + 20(𝑝𝐴0 )
5 (1−𝑝𝐴0 )

3

1−2𝑝𝐴0 (1−𝑝
𝐴
0 )

;

Calculate 𝑝𝐺𝐵 = (𝑝𝐵0 )
4 + 4(𝑝𝐵0 )

4(1 − 𝑝𝐵0 ) + 10(𝑝𝐵0 )
4(1 − 𝑝𝐵0 )

2 + 20(𝑝𝐵0 )
5 (1−𝑝𝐵0 )

3

1−2𝑝𝐵0 (1−𝑝
𝐵
0 )

;
Set 𝑝𝑅 = 1 − 𝑝𝐺𝐴;
Set 𝑞𝐺𝐴 = 1 − 𝑝𝐺𝐴;
Set 𝑞𝐺𝐵 = 1 − 𝑝𝐺𝐵;
Calculate 𝑝𝑆𝐴 (6, 0) = (𝑝𝐺𝐴 · 𝑞𝐺𝐵)3;
Calculate 𝑝𝑆𝐴 (6, 1) = 3 · (𝑝𝐺𝐴)3 · 𝑞𝐺𝐴 · (𝑞𝐺𝐵)3 + 3 · (𝑝𝐺𝐴)4 · 𝑝𝐺𝐵 · (𝑞𝐺𝐵)2;
Calculate 𝑝𝑆𝐴 (6, 2) = 12 · (𝑝𝐺𝐴)5 · (𝑞𝐺𝐴)2 · 𝑝𝐺𝐵 · 𝑞𝐺𝐵 + 10 · (𝑝𝐺𝐴)6 · (𝑝𝐺𝐵)2 · 𝑞𝐺𝐵;
Calculate 𝑝𝑆𝐴 (6, 3) = 60 · (𝑝𝐺𝐴)7 · (𝑞𝐺𝐴) · (𝑝𝐺𝐵)2 + 15 · (𝑝𝐺𝐴)8 · 𝑝𝐺𝐵;
Calculate 𝑝𝑆𝐴 (6, 4) = 360 · (𝑝𝐺𝐴)9 · 𝑝𝐺𝐵;
Calculate 𝑝𝑆𝐴 (6, 5) = 720 · (𝑝𝐺𝐴)10;
Calculate 𝑃𝑖 𝑗 = 𝑓0(𝑝0, 1 − 𝑝0) = 𝑝𝑆𝐴 (6, 0) + 𝑝𝑆𝐴 (6, 1) + 𝑝𝑆𝐴 (6, 2) + 𝑝𝑆𝐴 (6, 3) + 𝑝𝑆𝐴 (6, 4) +
𝑝𝑆𝐴 (6, 5);
return 𝑃𝑖 𝑗 ;

end

This pseudocode outlines the steps to calculate the probability of Player A winning a tennis
match based on the given game probabilities. Explanations of the symbols are:

• 𝑝𝐺𝑋 : The probability that Player X wins a game when serving, X=A or B.

• 𝑝𝑅: The probability that Player B wins a game when receiving, i.e. 𝑝𝑅 = 1 − 𝑝𝐺𝐴.

• 𝑞𝐺𝑋 : The probability that player X loses a game when serving, X=A or B, i.e. 𝑞𝐺𝐴 = 1−𝑝𝐺𝐴.

• 𝑝𝑆𝐴 (6, 𝑘): The probability that Player A wins a set with a score of 6-k, where k=0,1,2,3,4,5.

• 𝑃𝑖 𝑗 : The probability that Player A wins the match.

We plot the relationship between𝑃𝑖 𝑗 and 𝑝0. From Figure 4 we can see that𝑃𝑖 𝑗 is a monotonically
increasing function, thus we apply the dichotomy method to calculate 𝑝0.

Therefore, for a given 𝑃𝑖 𝑗 , the probability of winning the first point can be obtained and
applied in the dynamic algorithm updating the probability of winning the next point below.

5.3 Dynamic Computation of the Subsequent Points’ Win Probabilities
Once we determine the first point’s win probability, we proceed to compute the win probability

for the next point. We propose an efficient method to update the winning probability of both
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Figure 4: Relationship between 𝑃𝑖 𝑗 and 𝑝0

players in the next point through the equation below, considering the strong zero-sum game
property of tennis

PA(𝑡) =


𝑝𝐴𝑠 = 𝑝𝐴𝑠 (𝑆𝑚) if A is server and B is receiver

𝑝𝐴𝑟 = 1 − 𝑝𝐵𝑠 (𝑆𝑚) if A is receiver and B is server
(5)

where PA(𝑡) is player A’s probability of winning the next point, 𝑝𝐴𝑠 /𝑝𝐴𝑟 is the probability of A
winning the next point as a server/receiver. Therefore the model only requires an updating rule
for the server’s probability of winning the next point. We applied the Quasi-Binomial Estimator

𝑝𝑠 (𝑆𝑚) = 𝜂(𝑆𝑚) × 𝑝0 + (1 − 𝜂(𝑆𝑚)) × 𝑝𝑠 (𝑆𝑚) (6)

where 𝑝𝑠 (𝑆𝑚) is the probability of winning the next point for a server, 𝑝𝑠 (𝑆𝑚) denotes the mean
number of points won on serve through the 𝑛𝑡ℎ point of the match given a scoreline of 𝑆𝑚. 𝜂(𝑆𝑚) is
a dynamic weight that reflects in-match performance, varying between 0 and 1. Setting it to a
constant 1 makes 𝑝𝑠 (𝑆𝑚) = 𝑝0, effectively disregarding in-match performance. Consequently,
momentum, which is influenced by the flow of points within the match, ceases to be a factor
as it no longer affects the win probability of subsequent points. 𝑝0 is the probability of winning
the first point as stated in the section above. The parameter 𝜂(𝑆𝑚) balances the pre-match and
in-match serve information, with larger 𝜂(𝑆𝑚) values placing more emphasis on pre-match serve
expectations. 𝜂(𝑆𝑚) is calculated by

𝜂(𝑆𝑚) = 𝛼/(𝛼 + 𝑛) (7)

where 𝑛 represents the number of points played on serve by the current player, while𝛼 is proportional
to 𝜂 and represents the pre-match confidence in a player’s serving performance, quantifying the
in-match evidence needed to revise these pre-match expectations. We aim to optimize 𝑛𝑠 and 𝑛𝑟 to
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minimize inconsistencies between dynamic and pre-match serve expectations, as well as the error
between observed and dynamic expectations, by minimizing a specific loss function

𝐿𝑜𝑠𝑠(𝑛) = − 1
𝑚

∑︁
𝑖

𝜆𝑖

(
(𝑦𝑖 log(𝑝𝑠 (𝑆𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝𝑠 (𝑆𝑖))) + (𝑝𝑠 (𝑆𝑖) − 𝑝0)2

)
(8)

where 𝑦𝑖 represents the number of points a server has won out of 𝑚 service points. In any game,
an athlete’s performance in the moment of the game is more indicative of subsequent performance
than performance early in the game. Therefore the dynamic weight 𝜆𝑖 is calculated as

𝜆𝑖 =
𝑖∑𝑚
𝑖=1 𝑖

(9)

We take the match between Carlos and Nicolas for instance, and the result is shown in the figure
below.

Figure 5: Real-time changes in Carlos’s and Nicolas’s next point winning probability

The figure clearly indicates a significant serving side advantage, which must be factored into
player performance assessments. A server with a 51% win probability isn’t necessarily performing
better than a receiver with a 49% win rate. Therefore, it is necessary to further eliminate this
advantage.

5.4 Quantification of Momentum
With the win probability in real time, we are capable of acquiring the player’s performance in

real time

MMTA(𝑡) =
{

PA(𝑡) − 𝑝𝐴0 , if A is server
PA(𝑡) − 𝑝𝐴0 + 𝜀 , if A is receiver

(10)

The real-time performance for Carlos and Nicolas in their matchup is indicated below.
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Figure 6: Real-time momentum of Carlos and Nicolas

Carlos’s momentum curve shows more distinct peaks than Nicolas’s, indicating that Carlos’s
performance is often significantly higher than his pre-match predictions compared to Nicolas’s,
especially in the middle of the game where Carlos’s momentum peaks are almost exclusive (between
point #100 and #200). This suggests that Carlos has a strong momentum that helps him dominate
the game during mid-match, which ultimately contributes to winning the match.

5.4.1 Verification of the Significance of Momentum

To assess the role of momentum in tennis, we apply the Constant Win Probability (CWP)
model by setting 𝜂(𝑆𝑚) = 1 in the Real-Time Win Probability (RTWP) model, thereby disregarding
all in-match factors including momentum. We then consider the outcome of the CWP model as
our observed value. If the coach’s assertion is incorrect, the residuals (the differences between
the predicted and observed outcomes) would deviate from a normal distribution, indicating a
discrepancy between the models and the observed results. We employ both qualitative (probability
distribution plots of the residuals) and quantitative (K-S test) methods to evaluate the validity of the
coach’s hypothesis. If the coach’s claim is disproven, it confirms the existence and significance
of momentum in tennis matches, thereby validating the effectiveness of our RTWP and RTMQ
models.

Probability Distribution Plot of the Residuals

We plot the distribution of the residual in the figure 7 below.

This clearly suggests a non-normal distribution, since the mean values of 𝜎 are all larger
than 0 and it is not distributed centrally symmetric, prompting us to use the K-S test for further
investigation of the residuals’ distribution.
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Figure 7: Probability distribution of the residual of Carlos Alcaraz and Nicolas Jarry

K-S Test to Investigate the Distribution

In this case, the Null Hypothesis (H0) is the coach’s statement that momentum does not play
any role in the match. If H0 is true, then the residual should be close to a normal distribution. The
pseudocode for K-S Test is shown below.

Algorithm 2 Kolmogorov-Smirnov (K-S) Test
Data: Residuals 𝜎
Result: K-S test statistic 𝐷, p-value 𝑝
begin

Sort the residuals 𝜎 in ascending order;
Set 𝑁 as the number of residuals;
for 𝑖 ← 1 to 𝑁 do

Calculate 𝐷+ = max(𝑖/𝑁 − 𝜎[𝑖 − 1]);
Calculate 𝐷− = max(𝜎[𝑖 − 1] − (𝑖 − 1)/𝑁);

end
Calculate 𝐷 = max(

√
𝑁 · 𝐷+,

√
𝑁 · 𝐷−);

Calculate 𝑝 = 1 − 2
∑∞
𝑖=1(−1)𝑖−1𝑒−2𝑖2𝐷2;

return 𝐷, 𝑝;

end

Running the K-S test as introduced in the pseudocode above, using statistical software, results
are shown in table 3 below. The p-value for both players is much smaller than 0.05 (the common
chosen significance level). Therefore, we reject the H0 hypothesis and confirm the significance
of momentum in tennis matches.
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Table 3: Significant symbols in this paper
𝐷 Value 𝑝 value

Carlos 0.49958267649880644 1.338386540467465e-62 << 0.05
Nicolas 0.47375107203988065 5.94542201790284e-56 << 0.05

5.5 Momentum Trend Value (MMTTV) Visualization
Considering the volatility and periodicity of the real-time momentum curve, we apply Fourier

series to fit the curve to eliminate the effects of cyclical fluctuations in win probabilities, acquiring
the momentum trend value (MMTTV) in real time. Fourier series is a powerful mathematical tool
that can be used to represent and analyze periodic functions. It describes a periodic function as a
sum of sine and cosine functions. The general form of a Fourier series is

𝑓 (𝑥) = 𝑎0 +
∞∑︁
𝑛=1
[𝑎𝑛 cos(𝑛𝑤𝑥) + 𝑏𝑛 sin(𝑛𝑤𝑥)] (11)

Applying Fourier series curve fitting to our real-time momentum data, we finally capture the
momentum trend and obtain the MMTTV data for both athletes, which is the blue line in the figure
below.

Figure 8: The momentum trend value for both players

It is easy to see from the figure that a dramatic momentum shift occurred near point #130, when
Carlos’ momentum reached over 0.23 and Nicolas’ momentum dropped to about 0.06, turning the
situation around and leading to the swing. The final success of Carlos is therefore closely related
to this momentum shift, and subsequent sustained rises in Nicolas’ momentum did not positively
affect his final result.
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6 Swing Prediction Model
6.1 Data Preprocessing

In the Wimbledon_featured_matches.csv, columns AQ(speed_mph), AR(serve_width), AS
(serve_depth), AT(return_depth) have missing values (NA). They are handled as follows:

Step 1: Address missing values in columns AR, AS, AT.

• If either column AB or AC in a row is 1, replace NA in columns AR, AS, AT of these
rows with ’F’ (Fail). This is because columns AB and AC represent points lost due to player
errors. We assume that the NA values in these cases are unclassified results caused by errors.

• If any of the columns U, V, W, X in a row is 1, replace NA in columns AR, AS, AT
of these rows with ’UN’ (Unknown). Columns U, V, W, X represent points scored due to
high-quality shots (serve/return), with NA values attributed to unknown factors.

Step 2: Address missing values in column AQ .

• Exclude the matches between Daniel Elahi Galan and Mikael Ymer, and between Guido
Pella and Roman Safiullin. This is because ball speed and rally count are both crucial
technical indicator in tennis, and these matches lack the two records.

• If any of the columns U, V, W, X, AB, AC, AD, AE, AF, AG in a row is 1, replace the NA
in column AQ with the average ball speed of the match. This is because the absence of
ball speed data for high-quality shots, error shots, and net shots may be due to errors in the
data recording process or factors that make the data unrecordable.

6.2 Indicators Calculation
Key indicators are calculated based on previous research and experience. We have identified 25

indicators based on the mainstream technical indicators in tennis, related scientific research papers
and professional analysis. Due to their excessive number, our paper shows the calculation of only
3 of the indicators, the calculation and explanation of all indicators is in Appendix A.

Aces_p𝑖 =
n(ace)

n(successful serves)

Break_p𝑖 =
n(server = 𝑗 , break_pt_won = 𝑖)

n(server = 𝑗 , break_pt = 1)

Depth_CTL_p𝑖 =
n(server = 𝑖, serve_depth = 𝐶𝑇𝐿)

n(server = 𝑖, serve_depth ≠ unknown)
...

(12)

where Aces_p𝑖 represents the proportion of successful serves by player 𝑖 that are aces, Break_p𝑖 rep-
resents the proportion of break points won by player 𝑖 when player 𝑗 is serving, and Depth_CTL_p𝑖
represents the proportion of serves by player 𝑖 that land in the “CTL” (Close To Line) depth zone.



Team # 2406176 Page 16 of 27

6.3 Exploratory Factor Analysis
Given the multitude of performance indicators for a player, we use a Factor Analysis Model to

distill key factors that better represent the player’s technical performance. Therefore, all indicators
can be quantified by the factors with the corresponding weights. Let 𝑋𝑝 (𝑝 = 1, 2, ..., 25) represent
all indicators, and they can be represented by weighted factors as follows

𝑋1
𝑋2
...

𝑋𝑝


=


𝜇1
𝜇2
...

𝜇𝑝


+


𝛼11 𝛼12 · · · 𝛼1𝑚
𝛼21 𝛼22 · · · 𝛼2𝑚
...

...
...

𝛼𝑝1 𝛼𝑝2 · · · 𝛼𝑝𝑚



𝐹1
𝐹2
...

𝐹𝑚


+


𝜀1
𝜀2
...

𝜀𝑝


(13)

where 𝐹1, 𝐹2, ..., 𝐹𝑚 are factors that are unobservable, 𝛼𝑖 𝑗 is the weight matrix of the factors, 𝜇𝑖
is the mean of the variable 𝑋𝑖 and 𝜀𝑖 is the unique or error term for the variable 𝑋𝑖. The constraints
of the model are

𝑐𝑜𝑣(𝐹, 𝜀) = 0, 𝐷 (𝐹𝑖) = 1, 𝐷 (𝜀𝑖) = 𝜎2
𝑖 (14)

Indicators undergo z-score normalization to normalize their scale and mitigate the effect of different
units or magnitudes prior to factor analysis. We perform a Bartlett’s Test of Sphericity to determine
if there is a high degree of internal correlation in the data. If so, factor analysis is performed.

Algorithm 3 Bartlett’s Test of Sphericity
Data: Indicator matrix X
Result: Test statistic, p-value, and a decision on whether the data need to be factor analyzed
begin

𝜒2 = − log(det(𝑅)) (𝑁 − 1 − 2𝑛+5
6 )

where 𝑅 is the correlation matrix of the dataset, 𝑁 = 109 (number of data points), 𝑛 = 25;
𝑝 = 1 − 𝐹𝜒2

(
𝜒2,

𝑝(𝑝+1)
2 − 1

)
;

if 𝑝 < 0.05 then
The data is appropriate for factor analysis.;

end
else

The data is not appropriate for factor analysis.;
end

end

The test tells us 𝑝 < 0.05, so we performed factor analysis. We extract five factors. Taking 3
factors as an example and looking at the factor loading matrix, we found:

• For Factor 1, Aces_p𝑖(0.754), 1st_srv_won_p𝑖(0.730), and Width_W_p𝑖(0.685) have the
highest absolute factor loadings, which indicates that Factor 1 characterizes the player’s
ability to win points and quality of play as a server. Since this factor is almost entirely
related to server metrics, we treat Factor 1 as a factor specializing in server ability.
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• For Factor 2, Depth_CTL_p𝑖(0.792) and Net_pt_won_p𝑖(0.568) have the highest absolute
factor loadings. As a result of our research, we found that when a player tends to hit a CTL
ball, it is likely that the player will need to run longer distances faster to receive the ball. Thus
Factor 2 characterizes whether the player tends to put more or less effort into the play.

• For Factor 4, 1st_srv_drt_won_p𝑖(0.710), Winners4_p𝑖(-0.649), and Srv_avg_speed_p𝑖(0.632)
have the highest absolute values of the factor loadings. Thus Factor 4 indicates the player’s
explosive ability, especially the ability to win the ball in the serve-receive phase.

We name the Factor 1 as AggressiveServe, Factor 2 as ExtendedPlay, Factor 3 as Endurance,
Factor 4 as ActiveDefense, and Factor 5 as ForehandBias based on the characteristics of the
indicators they contain and the characteristics of the factor loading matrix.

6.4 Prediction of Swing Based on Multivariate Linear Regression Model
We utilize a Multivariate Linear Regression Model to predict tangible momentum shifts,

or swings, in tennis matches. Our model operates on a per-set basis, as a set provides a more
comprehensive dataset for analysis compared to individual games. This approach minimizes the
impact of outliers and enhances the reliability of the player’s performance evaluation. For instance,
a shift from high to low momentum of two sets often indicates a potential swing (tends to lose
the game or even match). We sample the momentum trend value (MMTTV) from the momentum
trend at the end of each set. This is because the frequent in-set momentum shifts can render
predictions based on real-time momentum data at the end of each set unreliable. By calculating
the MMTTV values and other metrics at the end of each set, we align our methodology with
previous research and established analytical strategies in sports media, thereby ensuring a
robust prediction of momentum shifts. The subsequent section outlines the training process for
the multivariate linear regression model that can be executed across numerous software platforms.

Algorithm 4 Multivariate Linear Regression
Data: Factor matrix (the 5 factors) X, Target vector MMTTV at the end of each set
Result: Coefficients of the 5 factors 𝛽, Predictions ˆMMTTV
begin

Initialize coefficients 𝛽 for each feature in X to 0;
Set learning rate 𝛼 and convergence threshold 𝜖 ;

while not converged do
Calculate the predicted probabilities ˆMMTTV = 1

1+𝑒−X𝛽 ;
Calculate the gradient 𝑘 = X𝑇 ( ˆMMTTV −MMTTV);
Update coefficients 𝛽 = 𝛽 − 𝛼𝑘;
If | |𝑘 | | < 𝜖 , set converged to True;

end
return 𝛽, ˆMMT;

end
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We take the match between Carlos and Nicolas for testing our prediction model, and the result
is shown in the figure below, indicating an accurate prediction.

Figure 9: Prediction of the value of momentum for both players

The result agrees well with the real-time MMTTV of the two athletes, with the peak and
trough in both figures occurring at the end of the second set. Sorting the weights of the factors,
AggressiveServe have the largest absolute weights, indicating that they are the most related factors
to predict the swings in the match. It is reasonable because serve ability and aggressiveness are
the most central indicators of a good or bad server’s ability. From the figure below we can see the
trend of the indicators are similar to that of the momentum curve.

7 Mixed-Strategy Nash Equilibrium Model
In the dynamic world of tennis, players strategically adopt different tactics with a certain

probability during a match to maximize their chances of winning. The choice of strategy, whether
for serving or receiving, can significantly affect the outcome of the game, creating a complex web
of decisions. To analyze this intricate web of strategic choices, we have adopted a Mixed-Strategy
Nash Equilibrium model. This model serves as a tool for predicting the most common combinations
of strategies employed by players prior to the game. As the match unfolds, the model allows us to
observe shifts in players’ strategies, providing valuable insights into which strategies a player must
pursue to gain an upper hand. Through our model, we aim to unravel the probabilistic nature of
strategic decision-making in tennis, paving the way for more informed and effective strategies.

7.1 Strategy Payoff Calculation
First we define the set of possible strategies that the opponent in the upcoming match (assume that

we need to study Stefanos Tsitsipas) may adopt. The strategies of the players can be characterized
by the factors we define previously. We compute the factor value at the end of each set in the
dataset, followed by cluster analysis in unsupervised learning.

We tried clustering the dataset and found that the set of strategies makes the most sense when
the number of clusters is 4 for the server and 3 for the receiver. Strategies that can be adopted by
servers are as follows:

• Server Strategy 1: A=0.83, B=0.72, C=0.63, E=0.49. This indicates a steep angle and fast
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ball speed, therefore the strategy is named Side-Tearing Assault.

• Server Strategy 2: A=0.69, B=0.31, C=0.76, E=0.79. This describes the tendency of players
to use a variety of stroke speeds, stroke angles, and different ball paths to control the pace of
play, thus named Pace Control.

• Server Strategy 3: A=0.25, B=0.66, C=0.87, E=0.69. This suggests that the player tends to
play each point longer, and play faster, close-to-net balls, so that the opponent is forced to go
to the net and might make a mistake, thus named Low-Bounce Onslaught.

• Server Strategy 4: A=0.44, B=0.52, C=0.55, E=0.54. This suggests that players adopt
slower ball speeds and hit a lot of approach shots, which is easy to create errors for the
opponent, thus named Short-Ball Maneuver.

For receiver strategies:

• Receiver Strategy 1 (Bottom Line Defense): With B=0.29, C=0.67, D=0.54, E=0.88, the
player tends to conserve energy, engage in extended rallies, and favor forehand shots. This
strategy, characterized by precise stroke and angle control from the baseline, is a common
defensive approach.

• Receiver Strategy 2 (Defense at the Net): With B=0.73, C=0.21, D=0.61, E=0.46, the
player prefers to conserve energy, end points quickly, and actively defend. This strategy often
involves moving to the net to counter strong baseline attacks from the opponent.

• Receiver Strategy 3 (Deep Defense): With B=0.77, C=0.87, D=0.49, E=0.81, the receiver
tends to play long points with a significant forehand bias. This strategy aims to provide
the player with more reaction time and make it challenging for the opponent to execute an
effective attack.

The values of each factor in all strategies are shown in figure 10 below.

Figure 10: The value of factors for strategies of both servers and receivers
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We incorporate the median value of each strategy cluster into our Swing Prediction Model to
predict the MMT value for each corresponding strategy. This predicted value represents the exact
payoff of the strategy and is used to calculate the expected payoffs below.

7.2 Model Setup
Mixed Strategies. A mixed strategy for player 𝑖 is defined as a probability distribution over the

set of pure strategies. Let 𝑛𝑖 denote the number of pure strategies available to player 𝑖. A mixed
strategy for player 𝑖 (the player is a server or a receiver) can then be represented as a vector

p𝑖 = (𝑝𝑖1, 𝑝𝑖2, ..., 𝑝𝑖𝑛𝑖 ) (15)

where 𝑝𝑖 𝑗 is the probability that player 𝑖 will play pure strategy 𝑗 . These probabilities are non-
negative and sum to 1

𝑝𝑖 𝑗 ≥ 0,
𝑛𝑖∑︁
𝑗=1

𝑝𝑖 𝑗 = 1 (16)

Expected Payoffs. The expected payoff for player 𝑖 given a profile of mixed strategies p is
calculated as the sum of the payoffs for each possible outcome, weighted by the probability of that
outcome. If 𝑢𝑖 (𝑠1, ..., 𝑠𝑛) denotes the payoff to player 𝑖 for strategy profile (𝑠1, ..., 𝑠𝑛), the expected
payoff is given by:

𝐸 [𝑢𝑖 (p)] =
∑︁
𝑠1

...
∑︁
𝑠𝑛

𝑢𝑖 (𝑠1, ..., 𝑠𝑛)
𝑛∏
𝑗=1

𝑝 𝑗 𝑠 𝑗 (17)

Best Responses. A best response for player 𝑖 is a strategy that maximizes player 𝑖’s expected
payoff, given the strategies of the other players. Formally, a best response p∗

𝑖
satisfies

p∗𝑖 ∈ arg max
p𝑖

𝐸 [𝑢𝑖 (p𝑖, p−𝑖)] (18)

Nash Equilibrium. A mixed-strategy Nash equilibrium is a strategy profile where every
player’s strategy is a best response to the strategies of the other players. Formally, a strategy profile
p∗ = (p∗1, ..., p

∗
𝑛) is a Nash equilibrium if and only if for all 𝑖

p∗𝑖 ∈ arg max
p𝑖

𝐸 [𝑢𝑖 (p𝑖, p∗−𝑖)] (19)

In other words, no player can improve their expected payoff by unilaterally deviating from their
equilibrium strategy. Bringing our strategies into the model, the probability combination of
strategies that our player should take to against Stefanos Tsitsipas is shown in figure 11 below.
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Figure 11: Optimized combination of strategies when S.T. is server and R.S. is receiver

8 Test of FSF Model and SP Model
After completing the construction of FSF and SP model, we used the data of other matches as a

test set to verify the accuracy of our model’s predictive ability. Here we use the FSF model instead
of the RTMQ model because we want to track the momentum trend without the frequent
shifts in the RTMQ model.

8.1 The Match between Alcaraz and Djokovic
First, we selected one of the most exciting match, the Grand Slam championship match between

the young Carlos Alcaraz and the veteran Novak Djokovic(The match number:1701). Inputting
the point-by-point data into our model generate the MMTTV prediction. Fig.x demonstrates that,
despite both players’ high levels, their MMTTVs closely overlapped, reflecting the match’s intensity.
Analysis showed MMTTV aligned with the actual match: Djokovic led early, Alcaraz caught up,
and Djokovic surged again before Alcaraz prevailed. This trend was consistent across multiple
matches, confirming the model’s accuracy.

Figure 12: FSF model and SP model results
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8.2 Model Generalization
To assess our model’s generalization, we used men’s singles data from the 2017 French Open,

which shares similarities with the 2023 Wimbledon Championships, including the best-of-five set
format and IBM Slamtracker data collection. Despite differences in court surfaces (red clay vs.
grass), our model maintained prediction accuracy, indicating good generalization.

In particular, the match between Andy Murray and Andrey Kuznetsov highlighted the model’s
reliability. Murray’s dominance, reflected in his MMTTV, aligned with our predictions and the
match’s outcome, further confirming the model’s effectiveness.

Figure 13: FSF model and SP model results

8.3 Contextual Limitations in SP Model
When applying SP model to conduct MMTTV predictions and dynamic game strategy selec-

tions, we observed that players balance their tactical strategies based on their own abilities and
those of their opponents. Within a single match context (e.g., all matches in the 2023 Wimbledon
Championships can be considered as having a consistent background), the model’s predictions
are accurate. However, when generalizing the model to different match contexts, various factors
such as the court’s impact on tennis ball bounce, climatic conditions influenced by the time of
the season, and other contextual elements prevent us from directly unifying datasets from different
matches to make sufficiently accurate predictions for a player facing a new opponent in a different
match context. For instance, knowing Roman Safiullin’s performance data only from grass courts
at Wimbledon makes it challenging to predict his strategic choices when playing on clay courts.

8.4 Key Indicators to be Included in Future Models
Beyond the generalization verification with the French Open dataset, we further discuss the

model’s generalization potential. Given the rule differences between men’s and women’s singles
tennis, extending our model to women’s singles or tournaments would require reconsidering the
change from best-of-five to best-of-three sets. This necessitates rederiving the initial value cali-
bration’s independent and identically distributed assumption. Extending the model to other racket
sports with a net, such as table tennis, would involve redefining technical indicators based on rule
variations and performing common factor analysis across different sports, incorporating relevant
technical analyses.
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9 Sensitivity Analysis
We conduct a sensitivity analysis on our model to assess its stability under external distur-

bances, thereby highlighting its advantages. As shown in Fig.x, when we alter the initial game
win probability as input, the overall trend prediction curve exhibited minimal translation despite
significant deviations in the initial values. The stability of the curve trend remain intact, ensuring
no impact on our MMT swing predictions. This demonstrates the strong robustness of our model.

Figure 14: Sensitivity analysis of MMT model
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To: Coaches

From: Team # 2406176

Date: Feb.5th, 2024

MEMO: Summary of Tennis Momentum Analysis and Coaching Recommendations

We are pleased to provide you with a summary of our recent research on tennis momentum
dynamics and the development of predictive models. Our research focuses on the Real-Time
Momentum Quantification (RTMQ) Model, Swing Prediction (SP) Model, and the application of
the Mixed-Strategy Nash Equilibrium Model in tennis matches.

Our findings suggest that momentum plays a significant role in tennis matches. The RTMQ
model quantifies momentum by considering the disparity between pre-match and real-time win
probabilities. The model calculates the difference between real-time and pre-match win rates under
separate serve/receive conditions, taking into account the serving side’s advantage. The K-S test
confirms the significance of momentum, rejecting the hypothesis that in-match performance is
inconsequential.

The Swing Prediction (SP) Model operates on a per-set basis and exhibits an impressive 90.44%
prediction accuracy for large momentum shifts. The model uses specialized indicators, such
as 2nd_serve_direct_won and Net_approach_point_won, to predict momentum swings. These
factors contribute significantly to player momentum and can be used to prepare players to respond
effectively to events that impact the flow of play during a tennis match.

The Mixed-Strategy Nash Equilibrium Model provides insights into optimal strategic combinations
against diverse opponents. The model uses K-means clustering to identify strategic clusters for
tailored strategies. Coaches can use this model to prepare players to respond effectively to different
opponents and adjust their strategies accordingly.

In conclusion, our research equips coaches with advanced tools and insights to navigate the intricate
landscape of tennis momentum. Incorporating these findings into coaching strategies will enhance
players’ ability to respond effectively to events impacting the flow of play, contributing to improved
match outcomes. We recommend that coaches integrate these findings into their training programs
to improve players’ responsiveness to dynamic events during matches.

Feel free to reach out for further discussion or clarification.

Best Regards,

Team # 2406176
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Appendices
Indicators in Swing Prediction Model in 6.2

Aces_p𝑖 =
n(ace)

n(successful serves)

Winners_p𝑖 =
2 ∗ n(winner)

n(rally) − n(server) + n(winner)

Winners4_p𝑖 = 2 ∗ n(winner | rally_n ≥ 4)
n(rally | rally ≥ 4) − n(server | rally_n ≥ 4) + n(winner | rally_n ≥ 4)

Winners13_p𝑖 = 2 ∗ n(winner |1 ≤ rally_n ≤ 3)
n(rally | 1 ≤ rally_n ≤ 3) − n(server | 1 ≤ rally_n ≤ 3) + n(winner | 1 ≤ rally_n ≤ 3)

Double_fault_p𝑖 =
count(double_fault)

count(server)

1st_srv_in_p𝑖 =
count(server | serve_no = 1)

serve_sum

2nd_srv_in_p𝑖 =
count(server | serve_no = 2, double_fault = 0)

serve_sum

1st_srv_won_p𝑖 =
n(server | serve_no = 1, point_victor = 𝑖)

n(server | serve_no = 1)

2nd_srv_won_p𝑖 =
n(server | serve_no = 2, point_victor = 𝑖)

n(server | serve_no = 2)

Net_pt_won_p𝑖 =
n(net_pt_won)

n(net_pt)

Total_unf_err_p𝑖 =
n(unf_err)

n(total points)

Break_p𝑖 =
n(server = 𝑗 , break_pt_won = 𝑖)

n(server = 𝑗 , break_pt = 1)

1st_srv_drt_won_p𝑖 =
n(server | serve_no = 1, rally_count = 1)

n(server | serve_no = 1)

2nd_srv_drt_won_p𝑖 =
n(server | serve_no = 2, rally_count = 1)

n(server | serve_no = 2)
Srv_avg_speed_p𝑖 = mean(speed_mph | server = 𝑖)

1st_rcv_won_p𝑖 =
n(server = 𝑗 , serve_no = 1, point_victor = 𝑖)

n(server = 𝑗 , serve_no = 1)

2nd_rcv_won_p𝑖 =
n(server = 𝑗 , serve_no = 2, point_victor = 𝑖)

n(server = 𝑗 , serve_no = 2)

Width_B_p𝑖 =
n(server = 𝑖, serve_width = 𝐵)

n(server = 𝑖, serve_width ≠ unknown)

Width_C_p𝑖 =
n(server = 𝑖, serve_width = 𝐶)

n(server = 𝑖, serve_width ≠ unknown)

Width_W_p𝑖 =
n(server = 𝑖, serve_width = 𝑊)

n(server = 𝑖, serve_width ≠ unknown)
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Width_BC_p𝑖 =
n(server = 𝑖, serve_width = 𝐵𝐶)

n(server = 𝑖, serve_width ≠ unknown)

Width_BW_p𝑖 =
n(server = 𝑖, serve_width = 𝐵𝑊)

n(server = 𝑖, serve_width ≠ unknown)

Depth_CTL_p𝑖 =
n(server = 𝑖, serve_depth = 𝐶𝑇𝐿)

n(server = 𝑖, serve_depth ≠ unknown)

Return_depth_D_p𝑖 =
n(server = 𝑗 , return_depth = 𝐷)

n(server = 𝑗 , return_depth ≠ unknown)

F_won_p𝑖 =
n(point_victor = 𝑖,winner_shot_type = 𝐹)

n(point_victor = 𝑖)

Table 4: Indicators and their brief introductions
No. Symbol Introduction
1 Aces_p𝑖 Proportion of successful serves that are aces for player 𝑖.
2 Winners_p𝑖 Proportion of rallies won by player 𝑖.
3 Winners4_p𝑖 Proportion of rallies with 4 or more shots won by player 𝑖.
4 Winners13_p𝑖 Proportion of rallies with 1 to 3 shots won by player 𝑖.
5 Double_fault_p𝑖 Proportion of player 𝑖’s serves that are double faults.
6 1st_srv_in_p𝑖 Proportion of player 𝑖’s first serves that are in.
7 2nd_srv_in_p𝑖 Proportion of player 𝑖’s second serves that are in, excluding double faults.
8 1st_srv_won_p𝑖 Proportion of player 𝑖’s first serves that result in a point won.
9 2nd_srv_won_p𝑖 Proportion of player 𝑖’s second serves that result in a point won.
10 Net_pt_won_p𝑖 Proportion of net points won by player 𝑖.
11 Total_unf_err_p𝑖 Proportion of total points that are unforced errors for player 𝑖.
12 Break_p𝑖 Proportion of break points won by player 𝑖.
13 1st_srv_drt_won_p𝑖 Proportion of player 𝑖’s first serves that directly result in a point won.
14 2nd_srv_drt_won_p𝑖 Proportion of player 𝑖’s second serves that directly result in a point won.
15 Srv_avg_speed_p𝑖 Average speed of serves for player 𝑖.
16 1st_rcv_won_p𝑖 Proportion of first serves received by player 𝑖 that result in a point won.
17 2nd_rcv_won_p𝑖 Proportion of second serves received by player 𝑖 that result in a point won.
18 Width_B_p𝑖 Proportion of player 𝑖’s serves that land in the "B" width zone.
19 Width_C_p𝑖 Proportion of player 𝑖’s serves that land in the "C" width zone.
20 Width_W_p𝑖 Proportion of player 𝑖’s serves that land in the "W" width zone.
21 Width_BC_p𝑖 Proportion of player 𝑖’s serves that land in the "BC" width zone.
22 Width_BW_p𝑖 Proportion of player 𝑖’s serves that land in the "BW" width zone.
23 Depth_CTL_p𝑖 Proportion of player 𝑖’s serves that land in the "CTL" depth zone.
24 Return_depth_D_p𝑖 Proportion of serves received by player 𝑖 that land in the "D" depth zone.
25 F_won_p𝑖 Proportion of points won by player 𝑖 with a forehand shot.
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Report on Use of AI

1. Bing AI
Query1: write a pseudocode for Bartlett’s Test of Sphericity, please generate in latex code
format. you should contain all necessary mathmetical equations.
Output: Here’s a pseudocode for Bartlett’s Test of Sphericity, which is a statistical test for the
assumption of equal variances in the population. The test statistic is calculated as follows:

Algorithm 5 Bartlett’s Test of Sphericity
Data: Indicator matrix X
Result: Test statistic, p-value, and a decision on whether the data need to be factor analyzed
begin

𝜒2 = − log(det(𝑅)) (𝑁 − 1 − 2𝑛+5
6 )

where 𝑅 is the correlation matrix of the dataset, 𝑁 = 109 (number of data points), 𝑛 = 25;
𝑝 = 1 − 𝐹𝜒2

(
𝜒2,

𝑝(𝑝+1)
2 − 1

)
;

if 𝑝 < 0.05 then
The data is appropriate for factor analysis.;

end
else

The data is not appropriate for factor analysis.;
end

end
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